If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18d+81=d^2
We move all terms to the left:
18d+81-(d^2)=0
determiningTheFunctionDomain -d^2+18d+81=0
We add all the numbers together, and all the variables
-1d^2+18d+81=0
a = -1; b = 18; c = +81;
Δ = b2-4ac
Δ = 182-4·(-1)·81
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18\sqrt{2}}{2*-1}=\frac{-18-18\sqrt{2}}{-2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18\sqrt{2}}{2*-1}=\frac{-18+18\sqrt{2}}{-2} $
| 6/5=f2/5 | | (p+35)38=3,268 | | -4x-7=-37+6x | | k-55=2 | | 60=-x+188 | | 28+.50x=2.25x | | z2.75=4 | | -87=3t | | 0.35x+4.95=11.95 | | 3,268=38(p+35) | | 29-x=160 | | 6+x/6=4 | | -19+z=30 | | s–4+2=6 | | 81+7y=81 | | 105+12x=180 | | -5x-33=2x=58 | | 10/4x=48 | | 11+15x=17+14x | | 42=-8(3-k)+6(k-3) | | 10/4x=120 | | 3m+15-3=50 | | Y=25x-(19+6x) | | 24-12y-y=-145 | | 10/4x=210 | | 0=-5x^2+40x | | 5/14x=210 | | 10/14x=210 | | 3t+-3=0 | | 11+22x=17+19x | | 6/7y=15 | | 15x+1=17x-1 |